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LETTER TO THE EDITOR 

An effective spin model for the magnetism of oxide 
superconductors 

Giancarlo Jug 
Intemationsl School for Advanced Studies, Strada Costiera 11, 34014 ‘Itieste, Italy 

Received 30 November 1990 

Abstract. Assuming localized Cu+t magnetic momenta to survive for Low enough 
doping in systems like Laz-,Sr,CuO+, an effective spin model is constructed in 
order to understand the magnetic structures characterizing the CuOz planes. A 
field-theoretic treatment calls for two separate non-linear-s-mdd descriptions, below 
and above a specific threshold in doping, within which the fluctuations of magnetic 
correlations can be properly accounted for. An interesting new mechanism for super- 
conductivity might ensue within a faithful, though qualitative, description of the 
phase diagram. 

A successful model and mechanism for high-temperature superconductivity must ac- 
count for the peculiar magnetic properties of the novel oxide superconductors [1,2]. 
In the more controlled systems of the La,-,Sr,CuO, family, it is found that distinct 
incommensurate magnetic structures characterize the spin fluctuations in the CuO, 
planes for dopings above the superconducting threshold 6, - 0.05. At  the same time, 
no incommensurate structure is detected by neutron-scattering experiments below 6,. 
The existence of such threshold behaviour for incommensurate ‘spiral’spin phases con- 
trasts with the mean-field explanations offered by existing t - J model calculations [3]. 
In this letter it is argued that further understanding can be gained by abandoning itin- 
erant electronic model calculations for an effective long-range spin-model analysis that 
can more efficiently take into account the fluctuations of the doped antiferromagnetic 
(AFM) background. The spin-off of such models might be the identification of a novel 
Cooper pair formation mechanism mediated by the quantum of a field associated with 
the frustration of the background itself. 

Consider a doped CuO, plane and imagine that the itinerant hole degrees of free- 
dom are neglected, ezcepl for their frustrating effects on the background of the local- 
ized Cu++ spins. If 6 = 0 this reduces to a nearest-neighbour quantum Heisenberg 
superexchange Hamiltonian, which has been demonstrated to correctly account for 
the spin fluctuations within the La,CuO, magnetic planes [4]. When 0 < 6 < 1 many 
arguments [5] suggest that the motion of holes in the AFM background induces trails 
of frustrated bonds which, in some mean-field sense, results in a spiral spin struc- 
ture having incommensurate inverse pitch A m 6 [3]. Such a mean-field structure of 
the spins can be immediately accounted for by making use of an effective frustrated 

oS53-8984/91/091211+07$a3.50 @ 1991 IOP PubWng Ltd 1211 



1212 Letter to the Editor 

quantum Heisenberg Hamiltonian: 

where the Si are the quantum s = 4 Cut+ spins on a square lattice, J < 0 is the 
nearest-neighbour superexchange coupling and J i j ( S )  is a suitably long-range further- 
neighbour interaction mimicking the frustrating effect of hole motion. A proper, yet 
problematic, derivation of the form of JiJ should follow from an appropriate realis- 
tic multi-band itinerant model containing both spin and charge degrees of freedom. 
However, here I take the stance that a phenomenological model is needed in order to 
make further progress, perhaps justifying the form proposed helow as corresponding to 
some indirect oscillating RKKY-type interaction [6] between the localized spins medi- 
ated by the mobile vacancies and appropriate for the two-dimensional geometry. Fine 
details of the interaction should not qualitatively change the conclusions of this work; 
in the worst possible scenario, the following is just an interesting statistical-mechanics 
model. Denoting by the integer coordinates (l,m) a certain shell of neighbours of a 
given spin, and by v(f ,  m) (= 4 or 8) its coordination number, I consider the model 

for l2 + m2 > 1 and with J = 0 for a m  > A(6), with A a suitably divergent 
range of the interaction for 6 + 0. Hence, there is an oscillating effective - bZ/r 
type interaction with C some positive constant and a the lattice spacing. For small 
6 the classical mean-field spin configuration appropriate for the model will he an 
incommensurate spiral defined in an arbitrary plane and deviating slightly from perfect 
NGel ordering. With the classical parametrization 

u(R,) = s(il CO+, . R, + e )  + ~ ~ ~ i n ( k ,  . R~ + e)) 
for the spin, the incommensurate spiral wavevector k, maximizes J(k) = cj J s j  exp(ik. R,J) [7]. Calculating to the appropriate lowest order in 6, a true max- 
imum is found for h, = r / a  f A with the inverse spiral pitch A % 6/a for model 

Though the mean-field structure of [3] is thus recovered, the task now is to study 
its stability to quantum and thermal fluctuations. This can be done by means of 
an efficient path-integral approach to the non-hear-u-model description of the low- 
energy spin dynamics [8,9]. The quantumpartition function 2 = JDuexp(-S) calls 
for the low-temperature ( p  = 1/%,T -+ CO) arbitrary-s effective action for the classical 
local magnetization field ui(.) 

(2). 

Here 62; = cj Jijuj is the fluctuating ‘molecular field’ and the dots stand for higher- 
order terms in the ‘fictitious time’ derivative expansion. Also, A is Dirac’s mag- 
netic monopole potential (c”YAan,d,(62) = Q,/lVJ3), associated with Berry’s phase 
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Figure 1. Ground-state energy plot versus doping for the king vesion of Hamil- 
tonian (1) and (2). AFM and FEM refer to the antifemmagnetic and ferrimagnetic 
odeling, while the intermediate curves should correspond to furte concentratio= of 
h t r a t i o n  vortices and antivortices. 

and possibly giving rise to a topological term in the continuum limit action, while 
M P y ( 0 )  = (1/21n13)(6,, - C2PC2v/10(z). In order to work with a smooth spatially 
varying order-parameter field n i ( ~ ) ,  one can fix the arbitrary 0 phase, chirality and 
plane of the spiral [9,10] and make use of the transformation U = sRn, with 

cos((i, + i y ) ( n  + Aa)) -sin((iz + i y ) (n  + Aa)) 

ai(.)= sin((i,+iy)(n+Arr)) cos((is + i , ) (n+Aa))  : ) . ( 0  0 R 3 T )  
14) 

For n = (n1,n2,0) uniform (with In1 = 1) the above matrix reproduces the classical 
spiral ground state, so the in-plane fluctuations can all be described by the dynamics 
of nl'(7). But the off-plane spin fluctuations are not imposed by the ground state and 
need not necessarily be of the staggered form characterizing the 6 = 0 system. 

To understand which type of off-plane mode presents the lowest excitation energy, 
consider the Ising ground-state problem associated with Hamiltonian (l), (2). As 
6 + 0 one expects the standard staggered AFM arrangement to hold, but for sufficiently 
high 6 a uniformly frustrated configuration such as the ferrimagnetic (FEM) will set 
in, as shown in figure 1. Also in this figure, energy curves for more complicated 
Ising ground states characterized by non-uniform frustration field configurations [9] 
are reported for this model; each curve might correspond to a different density of the 
frustration vortices depicted in figure 2 (a),(b). Back to the full quantal Heisenberg 
Hamiltonian, one can imagine that the off-plane fluctuations of .;' will follow the 
standard AFM arrangement with Rf3 = (-lP+;* up to the threshold 6, in doping 
where the frustration field w willset in (figure 1). For 6 > 6, the off-plane fluctuations 
will be organized by the fluctuating field wi(.r)  through 'R33 = (-l)$[wl, where Q 
is an appropriate mod(2) integer mapping out the w-field configuration. All the 
discontinuous lattice variations of mi are now absorbed in the O(3) matrix 'R, while 
the (highly singular) 6 = 0 limit form R, = (-U)'.+'. is recovered. Since mi(?-) is 
slowly varying, one can now expand over several neighbour shells in this field to obtain 
the continuum-limit action from (3) to lowest suitable order in 6. 



1214 Letter t o  the Editor 

I 
....... . . . . . . . . . . . . . . .  

............................. 

. . . . . . . . . .  ........ . . . .  . . . .  . . . . . . . . . . . . . . . .  . . . . .  . . . . .  . . . . . . . . . . . . . . . . . .  . . . . . .  . . . . . .  . . . . . . . . . . . . . .  
. . . . . .  

f+; ; 

; j j I . . . . . .  
: . . .  a:;:; i ; ;  j . . . . . . .  . .  . . >  . . . . . . .  . . . . . .  . . . . .  . . . . . . . . . .  

F 

... - ... - .  
. .  . .  . .  . .  , .  
. .  
, .  . .  . .  , .  

. .  . .  . .  . .  

. .  . .  . .  

. .  . .  . .  

. .  . .  . .  . .  . .  . .  . .  . .  

........ im . . .  . .  

. .  . .  . .  

:IC . . a . . .  

. . . . . . . .  
. . . . . . . . .  
. . . . . . . . .  

Figure 2. w-field vortex configurations. ( a )  low doping; ( b )  higher doping (6 > &), 
with the formation of vortex-antivortex lattice pairs. R33 is  (say) +1 on full and -1 
on broken lines. 

Drastically different non-linear-o-model actions are obtained (the constraint 
In(z, y, .)I = 1 is always recovered) according to whether 6 - 6, < 0 or 6 -6, > 0. For 
6 < 6, (no off-plane frustration) there is no topological term and the effective action 
is 

with the following doping dependence of the parameters: 

m: = 4aw2(1 - cos(Aa))(l + . e - )  2: 2A2 

and the quantities in brackets arising from the long-range part of the Hamiltonian. A 
dependence h ( 6 )  - 6-’13/1 In 61 for the 3 interaction range has been taken in deriving 
the above forms. Many important observations should be drawn from (5) and (6). 
First, doping generates a uniaxial anisotropy such that at  distances greater than a 
crossover length of the order of the spiral’s pitch, A - A - ~ B Q ,  the spin ordering is 
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dominated by an Ising fixed point. Hence, the incommensurate spiral of [3] is destroyed 
by quantum and thermal fluctuations; this is probably why incommensurate order has 
not been observed at  low doping in real oxides. Moreover, there is softening of the 
spin-wave motion with increasing 6 while the true dimensionless coupling constant 
uo(6) increases rapidly by the effect of long-range tail corrections: 

Hence, as shown in figure 3(a), where the largedistance phase diagram for S, is 
sketched, there will be rapid disordering of the spin layer .with increased doping and 
a corresponding rapid drop of both the two- and three-dimensional N&l temperature 
TN(S), as observed in real systems. The prediction here is that, bearing in mind the 
crossover, TN is an Ising AFM critical point. 

QL1*%ORDERED 

Figure 3. Large-wale fixed point phase diagranu. (a) the S< case, where the rapid 
gmwth of 4 6 )  destroys (Ising) antiferromagnetism. ( b )  the S> case, where the slow 
drop of 4 6 )  recovw pair formation within a latent ,yY magnetic StNdUTe. 

For 6 > So (when real frustration sets in) there are non-trivial topological terms 
and the effective action, within a dilute frustration vortex approximation, is 

with the following doping dependence of the parameters: 
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where K N C2I3 and A Q: 1 is a virtually doping-independent positive constant. 
Since gb]/gt > 0, the above action is exactly of the type found for the triangular- 
lattice Heisenberg AFM [9]; w and w are Cartesian coordinates attached to the local 
w-field direction. Doping for 6 > 6 ,  results in completely novel structures (though the 
large-distance behaviour of (8) is lamentably not completely understood). First, an 
easy-plane anisotropy is generated such that  at distances greater than ashort crossover 
length X - a( l  + fIi64/3) the spin ordering is dominated by an XY fixed point. The 
incommensurate spiral is now stable to quantum and thermal fluctuations and could be 
observed in a scattering experiment [l]. However, there is simultaneously a crossover 
to reduced (1+1) dimensionality owing to strong high-momentum fluctuations of n. in 
the direction of the frustration field w which thus gets renormalized away. The true 
large-distance fixed point is the (l+l)-dimensional XY, and the associated phase 
diagram for S, is sketched in figure 3(b) .  Moreover, there is a re-stiffening of the 
in-plane spin-wave motion with increased 6 while the dimensionless coupling constant 
4 6 )  changes to show a slow decrease 

uo(6)a = g,c 11 - - -(1 Jza - 5 1 I<64/3 + . . .), (10) 
S 

Depending on the details of the model, the following scenario may occur, as shown in 
figure 3(b) .  At first the ground state is a disordered spin liquid with free magnetic and 
frustration vortices, the latter, like in figure 2(a), living apart on the physical layer. 
But above a second T = 0 threshold 6, (corresponding to a ‘quantum’ Kosterlitz- 
Thouless transition) u0(6) enters a region characterized by a power-law correlated 
spin liquid with the formation of pairs of both magnetic and frustration vortices, the 
latter associated in pairs like in figure 2 ( 6 ) .  Vortex pairs exist below a crossover curve 
in the U-T phase diagram, which the coupling between CuO, layers will transform in 
a true transition curve. Although there are no charge degrees of freedom in this model 
as such, one could show that the T =  0 concentration of vortices is given exactly by 6. 
In addition, each vortex, be it magnetic or frustration in type (the two go together), 
carries a topologically generated spin &$ for half-integer spin s. This because the 
topological term S, in (8) generates one (l+l)-dimensional Pontryagin density term 
[SI for each frustration vortex of a w-configuration like in figure 2. This is in line 
with the effective large-scale (l+l)-dimensional nature of the fixed-point behaviour. 
Hence, it is tempting to associate a hole with each frustration vortex living in the AFM 
background. which can now be thought of as the perturbation in the Cuct spins ‘dug 
out’ by a mobile vacancy Ill]. The crossover curve of figure 3(b)  then becomes the 
transition for ‘Cooper pair’ formation, and its doping dependence looks qualitatively 
right for real oxides. The attraction between holes is magnetic and is mediated by the 
quantum of the frustration field w (the ‘frustron’). The coherence length 6 will be of 
the order of the average separation between vortex centres; it is clear from figure 2 ( b )  
that  pair motion will be highly correlated. 

In conclusion, on the basis of the analysis above, I would expect the 6-T phase 
diagram shown in figure 4. With suitable inclusion of disorder (e.g. a random spa- 
tial distribution of s), a small RKKY-type interaction such as (2) should generate a 
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b 

Figure 4. Qualitative phase diagram proposed for the present model. 

a bo 6, 

low-temperature spin-glass phase. Figure 4 is in complete qualitative agreement with 
experimental findings for the La2-,Sr,Cu0, family of oxide superconductors [2], par- 
ticularly where magnetism is concerned [I]. Further quantitative understanding of the 
present approach is within reach, although a proper treatment and quantization of 
the field w is yet to be developed. The form (2) for the long-range spin interaction is 
clearly too naive to quantitatively account for the properties of real systems. Further 
work is in progress and will be reported in due course, together with the details of the 
present calculations adapted for a realistic model of the cuprate superconductors. 
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